

travis-ci: Tools for Using Conda in Travis CI

This repository contains scripts designed to be used in .travis.yml files of GitHub repositories.
For more information considering Travis CI refers to its documentation [https://docs.travis-ci.com/].

Note

It can be convenient to work in a travis.yml file instead of .travis.yml file.
To do so, create the symoblic link .travis.yml to the travis.yml file.

These scripts are designed to be used with the following .travis.yml file:

os:
 - linux
 - osx

sudo: required

services:
 - docker

env:
 # Add here environement variables to control the Travis CI build

install:
 - git clone https://github.com/StatisKit/travis-ci.git travis-ci --depth=1
 - cd travis-ci
 - source install.sh

before_script:
 - source before_script.sh

script:
 - source script.sh

after_success:
 - source after_success.sh

after_failure:
 - source after_failure.sh

before_deploy:
 - source before_deploy.sh

deploy:
 skip_cleanup: true
 provider: script
 on:
 all_branches: true
 script: bash deploy_script.sh

after_deploy:
 - source after_deploy.sh

after_script:
 - source after_script.sh

Note

The config.sh script is executed from within the install.sh script.

Travis CI builds are decomposed into jobs.
These scripts allow to run different kind of jobs:

	Build a Conda recipe

	Build a Docker context

The jobs defined in your .travis.yml and the order in which there are runned depend on your repository objective.
For example, in the StatisKit software suite \(3\) kins of GitHub repositories are considered:

Warning

If a job failed on a given OS, all flowwing jobs on the same OS will fail.

Build a Conda recipe

To build a Conda recipe, you need to use the following environment variables:

	CONDA_VERSION equal to 2 (default) or 3.
Control the Conda version used for the build.

	CONDA_RECIPE.
The path to the Conda recipe to build.
This path must be relative to the repository’s root.

	ANACONDA_LOGIN (optional).
The usename used to connect to the Anaconda Cloud in order to upload the Conda recipe built.

	ANACONDA_PASSWORD (optional).
The usename’s password used to connect to the Anaconda Cloud in order to upload the Conda recipe built.

	ANACONDA_OWNER (optional).
The channel used to upload the Conda recipe built.
If not given, it is set to the ANACONDA_LOGIN value.

	ANACONDA_DEPLOY (optional).
Deployment into the Anaconda Cloud.
If set to true (default if ANACONDA_LOGIN is provided), the Conda recipe built will be deployed in the Anaconda Cloud.
If set to false (default if ANACONDA_LOGIN is not provided), the Conda recipe built will not be deployed in the Anaconda Cloud.

	ANACONDA_LABEL equal to main by default.
Label to associate to the Conda recipe deployed in the Anaconda Cloud.

	ANACONDA_CHANNELS (optional).
Additional Conda channels to consider.

	TRAVIS_WAIT (optional).
See this page [https://docs.travis-ci.com/user/common-build-problems/#Build-times-out-because-no-output-was-received] for more information.

Note

It is recommanded to define the environment variables ANACONDA_LOGIN, ANACONDA_PASSWORD and ANACONDA_OWNER in the Settings pannel of Travis CI instead of in the .travis.yml (see this page [https://docs.travis-ci.com/user/environment-variables#Defining-Variables-in-Repository-Settings]).
This is due to \(2\) major reasons:

	These variables tends to be shared between various jobs (e.g., all jobs with a CONDA_RECIPE environment variable).

	These variables tends to be overriden in forks and GitHub pull requests should not modify these values.

Build a Docker context

To build a Docker context, you need to use the following environment variables:

	DOCKER_CONTEXT.
The path to the Docker context to build.
This path must be relative to the repository root.

	DOCKER_LOGIN (optional).
The usename used to connect to the Docker Hub in order to upload the Docker image built.

	DOCKER_PASSWORD (optional).
The usename’s password used to connect to the Docker Hub in order to upload the Docker image built.

	DOCKER_OWNER (optional).
The channel used to upload the Docker image built.
If not given, it is set to the DOCKER_LOGIN value.

	DOCKER_DEPLOY (optional).
Deployment into the Docker Hub.
If set to true (default if DOCKER_LOGIN is provided), the Docker image built will be deployed in the Docker Hub.
If set to false (default if DOCKER_LOGIN is not provided), the Docker image built will not be deployed in the Docker Hub.

	TRAVIS_WAIT (optional).
See this page [https://docs.travis-ci.com/user/common-build-problems/#Build-times-out-because-no-output-was-received] for more information.

Warning

A Docker context can only be built on the Linux OS of Travis CI.

Note

It is recommanded to define the environment variables DOCKER_LOGIN), DOCKER_PASSWORD and DOCKER_OWNER in the Settings pannel of Travis CI instead of in the .travis.yml (see this page [https://docs.travis-ci.com/user/environment-variables#Defining-Variables-in-Repository-Settings]).
This is due to \(2\) major reasons:

	These variables tends to be shared between various jobs (e.g., all jobs with a DOCKER_CONTEXT environment variable).

	These variables tends to be overriden in forks and GitHub pull requests should not modify these values.

Index

	Run a Jupyter notebook, you should define these environment variables:

	JUPYTER_NOTEBOOK.
The path to the Jupyter notbook to run.
This path must be relative to the repository root.

	CONDA_ENVIRONMENT.
The path to the Conda environment to use when runnning the Jupyter notebook.

Warning

Channels given in the CONDA_ENVIRONMENT will be overriden by channels added to the Conda configuration by the script config.sh.

Organization Guide

For organizations, it is recommanded to fork this repository and to adapt the config.sh file in which you should give:

	Conda channels used for builds and installs,

	Anaconda label used for uploads.

For example, let us consider the config.sh written for the StatisKit organization:

	The TEST_LEVEL environment variables is used in Conda recipes to control the test launched (e.g., code:1 is for unit tests).

	The r Conda channels is added for all repositories.

	Uploads made on the release label of the Anaconda statiskit channel are only allowed for master branches.
Otherwise, the label is changed to develop.

	develop and release are the only accepted labels for uploads made on the Anaconda statiskit channel.

	For uploads on:

	Another Anaconda channel than statiskit, the channels used by Conda are statiskit (with the main label and develop labels) and the one given by the code:ANACONDA_OWNER environment variable (with the main and the label given by the ANACONDA_LABEL environment variable if given).

	The statiskit Anaconda channel, the channel used by Conda is statiskit (with the main label and the label given by the ANACONDA_LABEL environment variable if given).

Note

In order to prevent Anaconda channel collision for the release label on the statiskit channel (e.g. with AppVeyor CI), the release label is changed to travis-release.

Repositories Guide

To activate Travis CI for a GitHub repository, refers to this page [https://help.github.com/enterprise/2.11/admin/guides/developer-workflow/continuous-integration-using-travis-ci/].

Within the StatisKit organization, there exits 2 types of deployment for repositories:

	Repositories for realease deployment (e.g., StatisKit [http://github.com/StatisKit/StatisKit]).
The goal of these repositories is to build all source code that is designed to be installed in the same Conda environment and to test them together.
To do so,

	all Conda packages are built and deployed to the release label (given the environment variable ANACONDA_LABEL) without considering the develop label.

	Once all packages are deployed to the release label and have been tested, in a last job, packages are moved from the release channel to the main channel (given by the environment variable ANACONDA_RELABEL).

Warning

These type of repositories must contain fast_finish: true in the matrix field.
Otherwise, the last job moving the packages on the release channel to the main would be executed even if one job failed.

	Repositories for continuous deployment (e.g., ClangLite [http://github.com/StatisKit/ClangLite]).

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 travis-ci: Tools for Using Conda in Travis CI

 		
 Build a Conda recipe

 		
 Build a Docker context

_static/up-pressed.png

_static/up.png

_static/plus.png

